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ABSTRACT 
 

Key threat trends have identified shortfalls in Naval Surface Fire Support (NSFS), 

a mission area that is undergoing rapid evolution.  The Navy’s ability to effectively 

provide sea-based fire support to ground forces is profoundly challenged by mobile and 

reduced dwell time targets.  Furthermore, longer range enemy weapon systems, which 

must be destroyed at greater ranges prior to their engagement of friendly forces, will 

make NSFS timeliness a difficult proposition.  To overcome these threat trends, the 

United States is developing sophisticated weapons that promise increased lethality, 

greater ranges and improved responsiveness.  However, the development of robust firing 

policies to ensure effective weapon utilization has lagged behind the hardware.  Existing 

computer models and simulations have not addressed the question of NSFS gun/missile 

firing policy.  This thesis develops the Naval Surface Fire Support Simulation 

(NSFSSim) model, a discrete-event simulation that serves as an analysis tool to 

determine favorable firing policies for future NSFS gun and missile systems in support of 

determining the appropriate NSFS weapons mix.  NSFSSim models ships and their 

associated NSFS weapons in counterbattery and call fire missions against mobile, 

reduced dwell time targets.   Exploratory analysis using NSFSSim yields useful insights, 

and the component-based architecture underlying the model provides significant 

flexibility for further analysis.     
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DISCLAIMER 
 

The reader is cautioned that computer programs developed in this research may 

not have been exercised for all cases of interest.  While every effort has been made, 

within the time available, to ensure that the programs are free of computational and logic 

errors, they cannot be considered validated.  Any application of these programs without 

additional verification is at the risk of the user. 
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EXECUTIVE SUMMARY 
 

Key threat trends have identified shortfalls in Naval Surface Fire Support (NSFS), 

a mission area that is undergoing rapid evolution.  The Navy’s ability to effectively 

provide sea-based fire support to ground forces is profoundly challenged by mobile and 

short dwell time targets.  Furthermore, longer range enemy weapon systems, which must 

be destroyed at greater ranges prior to their engagement of friendly forces, will make 

NSFS timeliness a difficult proposition.  To overcome these threat trends, the United 

States is developing sophisticated weapons that promise increased lethality, greater 

ranges and improved responsiveness.  However, the development of robust firing policies 

to ensure effective weapon utilization has lagged behind the hardware.  The fiscal reality 

of budgetary constraints and the challenges posed by ever-increasingly capable and 

mobile enemy weapon systems highlight the need for sound analysis in the area of 

tactical employment of precision weapons.   

Existing computer models and simulations have not addressed the question of 

NSFS gun/missile firing policies.  Some studies conducted to address other NSFS issues 

have successfully used a consortium-of-models approach.  However, due to the rigid 

design of these simulation models, major modification to existing code is required to 

enable the models to work together.  To overcome these difficulties, this thesis developed 

the Naval Surface Fire Support Simulation (NSFSSim) model, a component-based, 

discrete-event simulation that serves as an analysis tool to determine favorable firing 

policies for future NSFS gun and missile systems. While no single model can properly 

analyze all aspects of the complex problem of sea-based fire support, it can yield useful 

insights to a small portion of the larger problem.   
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NSFSSim runs on any hardware platform and can be easily modified to support 

additional features and greater resolution.  This simulation model combines newly 

developed components with a few previously developed components.  A graphical user 

interface was built to enable rapid modification of input data, execution of simulation 

runs with different views, and the immediate display of output that lends itself to analysis 

using operations research methods.  Together, these components provide a useful analysis 

tool that is dynamic, flexible, and component based.  The notional scenario presented in 

this thesis is designed to demonstrate the type of analysis that can be conducted using 

NSFSSim. 

NSFSSim was created as a first step toward the goal of providing military 

planners and analysts with a component-based simulation tool that can aid in the 

formulation of integrated NSFS gun and missile firing policies against mobile/relocatable 

targets.  Its uses extend beyond the analysis of firing sequences and dispense diameters 

undertaken thus far.  The model can be used to investigate optimal artillery battery tactics 

against advanced NSFS weapons as well as the impact of response times, target location 

errors, and weapon precision limits on the success of NSFS missions.  Component 

modifications and additions can be made easily to create future versions of NSFSSim that 

are more complex and robust. 
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I. INTRODUCTION  

The end of the Cold War has redefined the environment in which the Navy must 

operate.  Amidst the challenges presented by increasingly scarce resources, the Navy has 

undergone a gradual metamorphosis from a “blue water” force developed for open-ocean 

engagements against the former Soviet Union to a littoral force that faces many potential 

adversaries.  Today’s Navy primarily projects power from the sea as an integrated part of 

Joint strike operations and in support of the Joint land battle.  The experiences of Desert 

Shield/Desert Storm highlight the emerging prominence of naval support of ground 

forces. 

The Navy’s Forward…From The Sea (FFTS) and the Marine Corps’ Operational 

Maneuver From The Sea (OMFTS), the Services’ authoritative statements on 

warfighting, envision an expanded role for naval fire support in future operations.  

Similarly, Joint Vision 2010 provides an operational template for future Joint warfighting 

that focuses on leveraging technology to achieve such concepts as precision engagement 

and dominant maneuver.  Evolving warfighting concepts as well as advancements in 

weapons technologies have altered perceptions about and broadened the potential 

requirements for sea-based fire support.  OMFTS, in particular, proposes dynamic 

strategies and tactics aimed at decisive action, mobility, surprise, and fires to enable 

maneuvers that exploit enemy weaknesses.  Effective naval fire support is paramount if 

OMFTS is to be realized.     

Historically, naval firepower from surface combatants has contributed to the 

success of nearly all military operations in or near the littorals.  Traditional Naval Gun 
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Fire Support (NGFS) has encompassed all naval guns from 3-inch to 16-inch to support 

amphibious operations.  Today’s modern warships have either one or two Mark (MK) 45 

5-inch/54-caliber guns capable of firing ballistic rounds to a maximum range of 

approximately thirteen nautical miles (nm).  When precision fires are required, however, 

the maximum effective range becomes greatly reduced.  Moreover, fire support planning 

and a plotting team using voice-reporting procedures is still accomplishing coordination 

on the most modern cruisers and destroyers.  Similarly, the Supporting Arms 

Coordination Center (SACC) on the newest amphibious assault ship still employs the 

manual practices and procedures reminiscent of World War II fire support planning.  

Clearly, current weapon ranges, organization, and planning and coordination procedures 

are inadequate to meet the requirements of 21st century warfighting concepts.   

The precepts of attrition warfare are being replaced by the Marine Corps’ concept 

of maneuver warfare, a paradigm which “envisions a faster-paced, longer-range insertion 

of troops with greater reliance on naval fire support and logistics.” (Allen, 1996)  No 

longer viewed as a gun preparing a hostile beachhead for amphibious operations, offshore 

fire support in the near future will be provided by precision-guided munitions and tactical 

land attack missiles.  These advanced weapons will be capable of destroying targets at 

ranges in excess of 100 nm.  

In recognition of these changes and the expanded role of surface combatants in 

support of the Joint land battle, the Navy has updated its terminology, replacing NGFS 

with Naval Surface Fire Support (NSFS).  Joint Pub 1-02, Department of Defense 

Dictionary of Military and Associated Terms, defines NSFS as “fires provided by Navy 
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surface gun, missile, and electronic warfare systems in support of a unit or units tasked 

with achieving the Joint commander’s objective.”  (OCJCS, 1994) 

Today NSFS is still limited in duration and is used primarily to provide short-

range fire support until organic artillery assets are established ashore.  Due to weapons 

limitations, fires are directed mainly at fixed defenses.  In the near future, however, NSFS 

will be provided at greater ranges and for extended durations.  In the early stages of the 

battle, sea-based fire support will serve as a surrogate for organic artillery, thereby 

enabling ground forces to maneuver against the enemy.  Later in the battle, NSFS will 

complement tactical aircraft (TACAIR) and organic artillery ashore.  Currently, logistics 

support and command and control (C2) functions shift from sea to shore following the 

post-assault phase of an amphibious operation.  In the future it is likely that these 

functions will remain offshore for as long as the situation permits.  Advanced capability 

NSFS weapons are one of the primary enabling factors of this new operational concept.        

These new weapons will include the Extended Range Guided Munition (ERGM) 

that will be fired from an improved 5-inch gun, a tactically employed Tomahawk missile, 

and a responsive land attack missile that uses an existing missile airframe.  Each missile 

will compete for space inside shipboard MK 41 Vertical Launching Systems (VLS).  All 

of these advanced weapons will utilize Global Positioning System (GPS) satellites for 

guidance to their respective aim points and promise greater lethality, range, and improved 

responsiveness.         

Several key threat trends have generated the need for such sophisticated weapons. 

Chief among these trends are the improved mobility of artillery, theater ballistic missiles 

(TBMs), and surface to air missiles (SAMs) and the use of shorter dwell times.  Improved 
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mobility and shorter dwell times equate to a reduced window of opportunity for fire 

support weapons to detect, acquire, and effectively engage enemy targets.  The prospect 

of destroying such targets becomes especially remote because weapon times of flight 

(TOF) increase as a result of extended ranges.   However, longer-range enemy weapon 

systems induce these extended ranges because the weapon systems must be destroyed 

prior to their engagement of friendly forces.  Additionally, improved enemy deception 

capabilities will adversely affect friendly reconnaissance/surveillance/target acquisition 

(RSTA) sensor performance. 

Naval surface-launched weapon systems are being developed to provide Aegis 

cruisers and destroyers the expanded capability of rapidly and precisely placing ordnance 

on target in support of the Joint land battle as well as expeditionary operations in the 

littorals.  While weapons development has proceeded with the momentum of adequate 

funding, weapons systems integration and tactical considerations remain at the 

conceptual stages.       

A. NSFS WEAPONS 

The NSFS Program Office (PMS-429) of the Naval Sea Systems Command is 

developing the Ex-171 ERGM that will be fired from a modified 5-inch/62-caliber gun.  

The ERGM, which advertises a maximum range of 63 nm, is scheduled to be deployed 

on DDG 81 and later Arleigh Burke class destroyers in 2002.  Subsequently, this gun 

system and the capability to fire ERGM will be backfitted on VLS-capable Ticonderoga 

class cruisers, specifically CG 52 and later ships.  This enhanced munition will dispense 

bomblets using a variable dispense diameter feature.  With this most important capability, 
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bomblet patterns can be concentrated to maximize lethality against a single target or 

broadened to allow the possibility of multiple mission kills against dispersed targets. 

Tomahawk Land Attack Missiles (TLAMs) have already proved their 

effectiveness in strike missions against fixed defenses.  NSFS integration of this potent 

weapon system involves the development of tactically tasked Tomahawk variants that are 

capable of in-flight retargeting in response to fire mission adjustments.  The Baseline IV 

Tactical Tomahawk Weapon System (TTWS) will enable sea-based land attack ranges of 

200 to 1,600 nm.  The major operational requirements of TTWS are the following (JCM-

2237, 1998):  

• Increase system flexibility to support receipt of missile/mission 

communications and enroute retargeting of the missile to alternate 

preplanned outcome or emergent target 

• Reduce system response time to allow engagement of emergent and 

relocatable targets 

• Improve lethality against a wider target set 

• Retain all Baseline III system capabilities (unless specifically exempted)   

Required, but still unfunded, is a more responsive land attack missile adapted 

from an existing missile airframe.  Two major candidate airframes exist.  The first is the 

Standard Missile (SM-2), a capable but aging air defense missile employed on many 

surface combatants.  In its modified NSFS role, the Land Attack Standard Missile 

(LASM) would carry a 120-pound improved unitary warhead and possess a maximum 
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range of 120 nm.  The second candidate missile is the Army Tactical Missile System 

(ATACMS).  The Navy version of this missile system, Navy Tactical Missile System 

(NTACMS), would carry a larger warhead weighing 390 pounds and extend the 

maximum range to 150 nm.    

In A National Security Strategy for a New Century, President William J. Clinton 

states that “the military challenges of the 21st century, coupled with the aging of key 

elements of the U.S. force structure, require a fundamental transformation of our forces.”    

One example of this transformation is the development of DD 21, the 21st Century Land 

Attack Destroyer, which has an Initial Operational Capability (IOC) date of 2008.  

Designed to replace Oliver Hazard Perry FFG 7 class frigates and Spruance DD 963 

class destroyers, DD 21 will be a multi-mission platform.  Its most potent mission, 

however, will be land attack warfare.  The twenty-three planned DD 21 class destroyers 

will possess either a trainable or vertical 155-millimeter (mm) gun capable of firing 155-

mm howitzers and larger versions of ERGM to ranges in excess of 100 nm.  DD 21 will 

enjoy larger magazine capacities than today’s Aegis cruisers and destroyers, making it 

even more formidable as an NSFS platform.  It will also possess TTWS and a 

complementary land attack missile.            

B. MOTIVATION 

Advanced NSFS weapons will bring vast performance improvements over the 

current NSFS weapon, the MK 45 gun.  Such technological sophistication comes with a 

heavy cost penalty, however.  These weapons will be much more expensive than today’s 

5-inch ballistic ammunition. Cost concerns over ERGM have already surfaced.  Recently 
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the Navy appointed an outside assessment team at the Massachusetts Institute of 

Technology’s Lincoln Lab to examine the program.  “Some Navy officials are concerned 

that the system’s complexity may increase its cost and delay deployment, currently 

scheduled for 2002.”  (Holzer, 1999)  Moreover, ship magazines will accommodate fewer 

of these larger munitions.  Larger costs per weapon, fewer weapons per surface 

combatant, and the desire for efficiency motivate an investigation into optimality 

considerations for these advanced weapons.            

The expectations for NSFS are at an all-time high.  Sound qualitative and 

quantitative analyses must be conducted to support efficient acquisition decisions that 

meet emerging NSFS requirements.  Similarly, analyses must be performed that 

investigate procedures and doctrine for the effective tactical employment of these 

advanced NSFS weapons.  Existing computer models and simulations have not addressed 

the question of NSFS gun/missile firing policies.  While no one-model approach can 

properly analyze all aspects of the complex problem of sea-based fire support, a single 

model alone can yield useful insights to a small portion of the larger problem.   

The previous section suggested problems that mobile, short dwell time targets 

pose for NSFS weapons.  To appreciate these problems, consider enemy weapon systems 

such as artillery guns and howitzers.   Most modern self-propelled artillery (SPA) and 

towed artillery systems are capable of cross-country speeds of 40 or more kilometers per 

hour (km/hr).  Recall that advanced NSFS weapons such as ERGM and LASM fly to an 

aim point believed to be the location of an enemy target.  Because the aim point is 

determined prior to weapon launch and remains fixed, any movement by the target away 

from the aim point minimizes the likelihood of the weapon’s impacting the target.  A 
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Mach 2.0 LASM fired from a surface combatant stationed 25 nm from the enemy coast, 

against a moving artillery unit that is 25 nm inland, surely will miss. Traveling at speeds 

below Mach 1.0, an ERGM fired under the same conditions has no chance of success.   

Realistically, an NSFS weapon can achieve a mission kill against a mobile target 

only during the target’s dwell time, or the time that it remains stationary at a geographic 

location.  The window of opportunity for achieving this mission kill likely is narrow for 

artillery systems.  Conceivably, a SPA gun could take as little as 90 seconds to emplace 

or make preparations to fire its gun, could fire six rounds at the rate of six rounds per 

minute for a total of one minute, and take another 30 seconds to displace before moving 

to a new location.  This tactic of firing rounds and then moving away from an aim point 

in avoidance of counterfire is commonly called “shoot and scoot.”  (Zimm, 1996)  This 

particular artillery gun, then, would present a window of opportunity of three minutes for 

an incoming NSFS missile or munition that must travel upwards of 50 nm prior to 

impacting the aim point. 

This thesis will develop the Naval Surface Fire Support Simulation (NSFSSim) 

model, a discrete-event simulation model that can provide useful insights into the 

problem of NSFS gun/missile firing policies against relocatable targets.  The simulation 

model will be used to explore the following questions: 

• In the tactical employment of ERGM and a land attack missile, what firing 

policies optimize mission effectiveness against mobile and short dwell 

time targets such as SPA and towed artillery batteries that utilize “shoot 

and scoot” tactics?  Specifically, what gun/missile firing sequence(s) 

minimize the number of rounds fired by a given mix of artillery batteries?  
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• For a given mix of SPA and towed artillery batteries, is there an optimal 

ERGM dispense diameter (20 meters (m), 40 m, 60 m, 80 m, 100 m)? 

NSFSSim is simple and does not profess to offer any definitive results.  However, 

the model does provide some useful insights into the questions listed above.  Combat is a 

complex and uncertain proposition.  In this case, the uncertainty is compounded by the 

inclusion of future weapons systems, whose technical performance measures (TPM) are 

still evolving.  While these unknown parameters introduce uncertainties in any model, 

they offer an open invitation for the application of simulation modeling.  An analysis 

surrounding the questions posed in the previous paragraph is presented in Chapter III.          

C. BACKGROUND 

Studies have been performed to investigate the expanded role of surface 

combatants in support of land attack warfare. (Zimm, 1998)  Analyses of alternatives 

have been conducted to evaluate the effectiveness of various land attack gun systems.  

(Zimm, 1999)  Similarly, studies have been performed in efforts to decide which NSFS 

missiles should be installed on the Navy’s newest surface combatants.  (Schweizer, 1999)  

Spreadsheet optimization to determine optimal ship ordnance loadouts for NSFS missions 

has also been performed.  (Chien, 1997)  The impetus for these studies has been the 

evolving relationship of NSFS to the ground war as well as emerging weapons 

technologies.  Prior to these analyses, the Office of the Chief of Naval Operations 

(OPNAV) Strike and Fire Support Branch of the Surface Warfare Division (N863F), 

along with the Amphibious Branch of the Expeditionary Warfare Division (N853), tasked 
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the Johns Hopkins University, Applied Physics Laboratory (JHU/APL) with developing a 

Road Map for NSFS.  (Allen, 1996) 

This Road Map was “defined as a time-phased summary of systems, concepts and 

issues critical to development of an acquisition plan” that extends through 2010 and 

beyond.   (Allen, 1996)   Phase 1 of the two-phase study provides a preliminary Road 

Map and was completed in 1996; Phase 2, which concentrates on the qualitative factors 

of NSFS and modeling NSFS’ impact on the Joint land battle, is currently ongoing at 

JHU/APL.   

The overall Road Map development in Phase 1 resulted in general observations, 

conclusions, and recommendations for the future of NSFS.  Some of the observations on 

the current state of NSFS are: 

• Perceptions have shifted from NGFS to NSFS. 

• Warfighting concepts and scenarios are not yet mature. 

• Joint command, control, communications, computers, and intelligence 

(C4I) architectures are not keeping pace with weapons development. 

• The organizational hierarchy established to manage NSFS architecture or 

“system-of-systems” is widely diffused.   

Compounding these observations are key threat target trends that reveal shortfalls 

in NSFS and serve as drivers for future requirements.  Among these trends are use of 

short dwell time and mobile targets and enemy employment of longer range weapon 
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systems.  Chief among the conclusions and recommendations drawn from Phase 1 of the 

Road Map are (Allen, 1996):   

• There exists a need for a new vision that captures the relationship between 

tactical and strategic fires and the key performance parameters of NSFS 

(range, lethality, and responsiveness). 

• There is a need for quantitative and qualitative analyses to support sound 

Navy acquisition decisions.    

In February 1998, JHU/APL released a report entitled Land Attack Warfare 

Technical Studies that addressed the above recommendations.  The report documents the 

results of three studies conducted at JHU/APL.  The first two investigations were 

performed under the umbrella of the Surface Combatant Land Attack Weapons Study 

(SCLAWS).  The first was “a study which investigated the potential importance of Naval 

Surface Fire Support advanced gun weapon systems in the context of a Marine 

Expeditionary Force (MEF) level Joint-approved scenario.”  (Zimm, 1998) The second 

was a “study which investigated some of the issues surrounding optimizing the 

employment of low-Circular Error Probable (CEP) rounds.”  (Zimm, 1998)  The third 

study investigated “the potential of using advanced Tactics, Techniques, and Procedures 

(TTP) in the employment of advanced NSFS weapons.”  (Zimm, 1998)  All three 

investigations utilized a group of existing models, with and without major code 

modifications. 

SCLAWS Part 1A concluded that ERGM is able to shape the battlefield prior to 

engagements through a superior combination of range, lethality, and responsiveness.  In 
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addition, different munition types are necessary to effectively engage a diversity of 

targets.  Target mobility and hardness issues were addressed.  Lastly, the study concluded 

that surface combatants armed with anti-armor terminally homing rounds would benefit 

by preserving their ability to save ammunition for other targets.  (Zimm, 1998) 

Part 1B of SCLAWS was a weapons optimization analysis.  Among the 

recommendations offered was the importance of target location error (TLE) reduction to 

improve fire support weapons effectiveness.  (Zimm, 1998)  Also recommended was the 

development of algorithms to determine optimal dispense diameters against different 

targets.  The study determined that optimal dispense diameters vary for individual target 

types, but simulation runs with mixtures of different target types were not conducted.  

The study also cited a need for an NSFS fire control system that facilitates a 

Multiple Rounds Simultaneous Impact (MRSI) capability.  The idea behind MRSI is to 

coordinate individual weapon TOF such that multiple rounds impact one or more targets 

simultaneously.  Theoretically, MRSI would degrade the effectiveness of enemy artillery 

tactics such as “shoot and scoot” that seek to reduce their vulnerability.  MRSI has the 

support of many subject matter experts who espouse the benefits of massed or volume 

fire.  In 1996, Lieutenant General Paul Van Riper documented the requirement for 

volume fire in Naval Surface Fire Support Requirements for Operational Maneuver 

From The Sea.   

The third study incorporated advanced TTP into a four-model consortium, which 

included the Integrated Theater Engagement Model (ITEM), the “Enhanced Lanchester” 

model (ELAN), the Target Acquisition Fire Support Model (TAFSM), and the Army’s 

ARTQUIK model.  Code changes were made primarily to TAFSM, the Army’s premier 
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fire support model.  The study concluded that advanced TTP and “shooting smart” were 

critical to the reduction of ERGM quantity required to support a MEF.  The results also 

demonstrated the significance of increased magazine sizes.  When magazine capacities 

were limited, ships spent much of the engagement off line replenishing their ammunition.    

In 1999 JHU/APL completed an analysis of alternatives study which examined 

“the relative effectiveness in a land attack role of a 155mm Trainable Advanced Gun 

System as compared to a 155mm Vertical Advanced Gun System.”  (Zimm, 1999)  Once 

again, TAFSM, ELAN, and ARTQUIK models were linked.  The study concluded that 

overall a 155mm Trainable gun outperformed a 155mm Vertical gun as well as a 5-

inch/62-caliber gun.  This conclusion is in agreement with the most recent 

recommendation made by United Defense, the prime contractor for the DD 21 gun 

design, for a traditional, turreted gun in lieu of a vertical gun.  The Navy has concurred 

with this recommendation and will pursue a trainable gun solution.  (Skibitski, 1999)     

The debate continues over what land attack missiles to deploy on Aegis cruisers 

and destroyers to improve NSFS capabilities.  For more than three years, the Navy has 

wrestled with this decision of what NSFS missiles to install on these surface combatants.  

In April 1999 Chief of Naval Operations Admiral Jay Johnson agreed with a 

recommendation for the Navy to purchase LASM.  The Navy considers the procurement 

of LASM to be more cost-effective than converting the ATACMS to NTACMs.  The 

Navy plans to convert 800 to 1,200 aged SM-2s to outfit 22 Aegis cruisers and 27 Aegis 

destroyers.  (Schweizer, 1999)  Meanwhile, NTACMS builder Lockheed Martin has 

begun an intense lobbying campaign, asserting that NTACMS will be less costly than 

LASM because, with a larger warhead and greater range, fewer missiles will be required 
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to destroy enemy targets.  JHU/APL conducted the most recent evaluation of the two 

missiles, but neither missile dominated the other in the study. 

NSFSSim was created as a first step toward the goal of providing military 

planners and analysts with a component-based simulation tool that can aid in the 

formulation of integrated NSFS gun and missile firing policies against mobile/relocatable 

targets.  While not definitive, the simulation model is designed to operate on different 

platforms and to possess significant flexibility such that modifications can easily be made 

to increase the resolution or focus of the model.  For example, instead of analyzing the 

NSFS problem, NSFSSim could be extended to examine defensive firing policies for 

surface combatants against anti-ship missiles (ASM).  Another desirable feature of 

NSFSSim is that its user can quickly modify input parameters and immediately run 

simulations using a new data set (Fig. 1).  Appendix A discusses the data structures and 

Java source code that make this possible.    

Having provided a brief discussion of the challenges for NSFS and an overview 

of some studies that have been performed to address relevant NSFS issues, the next 

section describes the structure of this thesis.    
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Figure 1.  Editing Input Files in NSFSSim 

NSFSSim allows the user to easily modify input data.  By 
clicking on the Edit menu, the user can access any one of 
five editable data files.  Changes to the data are made by 
modifying existing text fields and then overwriting the 
current file.   

 

D. THESIS STRUCTURE 

NSFSSim is a discrete-event simulation written using the Java programming 

language.  As is the case with many simulation studies conducted at the Naval 

Postgraduate School (NPS), the flexible component architecture resident in NSFSSim is 

achieved by the use of Simkit, a discrete-event simulation package authored by Assistant 

Professor Arnold H. Buss and Lieutenant Kirk Stork, United States Navy (USN).  (Stork, 

1996)  

The next chapter will provide a detailed description of this analysis tool, focusing 

on its development as well as the logic, assumptions, and interactions that drive the 
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model.  Chapter III will offer an account of the types of analysis that can be conducted 

using NSFSSim.  Finally, Chapter IV will summarize the results of the study, offering 

conclusions and recommendations for further research.    
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II.  NSFSSIM 

NSFSSim was developed as an analytical tool to provide insights into the problem 

of optimizing advanced NSFS weapons employment against mobile, short dwell time 

targets.  The model’s object-oriented design enables its extension to the fulfillment of 

other purposes beyond this application. Conceivably, NSFSSim could be used to address 

the following issues relevant to simulation studies (Townsend, 1999): 

• Hardware acquisition, in which the new system (or additional purchases) 

are evaluated for their comparative worth.   

• Force structuring, in which the force is shaped to incorporate the correct 

ratio of weapon systems of the right types.   

• Tactical Development, in which non-lethal simulation can identify 

potential strengths and weaknesses of certain tactics.  

• Capability of Forces, where the ability of the force to accomplish missions 

in theater is evaluated.   

NSFSSim uses a discrete-event simulation methodology that is written in Java 

and uses some of Simkit’s existing components and functions. 

A. METHODOLOGY 

The decision to utilize Java and Simkit to build NSFSSim was an easy one.   Java 

offers platform independence, security, and powerful programming capabilities that are 
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not found in other languages.  Simkit, which is written in Java, likewise provides a wealth 

of software components.  When properly combined, or “loosely coupled,” these 

components can produce a robust and flexible discrete-event simulation.  (Bradley and 

Buss, 1998)   

Simulation methodology was chosen to investigate NSFS firing sequences 

because of the intrinsic properties of the modern battlefield.  Forces interacting on a 

modern battlefield will exhibit stochastic properties.  Many interrelationships combine to 

create a complex, non-linear situation.  A discrete-event simulation can model the 

dynamic processes associated with the modern battlefield.  As is the case with most real-

world systems, the NSFS problem is too complex to be evaluated analytically using a 

purely mathematical method.  On the other hand, by virtue of today’s powerful 

computers, a simulation enables a relatively rapid numerical evaluation of the problem.   

Within NSFSSim, a discrete-event mechanism was used to advance the simulated 

clock.  The state variables in a discrete-event simulation change instantaneously at certain 

points in simulated time, which correspond to the occurrence of events.  Simkit provides 

all of the basic tools needed to construct a discrete-event simulation: a mechanism for 

scheduling events, updating an event list as events occur, and removing events from the 

event list. 

Having presented the general methodology of NSFSSim, we next turn to a brief 

discussion of object-oriented programming (OOP) principles as a precursor to the more-

detailed modeling aspects of NSFSSim. 
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B. MODELING PRINCIPLES 

Before beginning an overview of NSFSSim’s component-based design, it is 

useful first to provide a rudimentary introduction to OOP definitions and modeling 

principles.  This section provides a brief description of OOP and its important design 

concepts, such as inheritance and encapsulation.  In addition, unique Java modeling 

concepts will be presented.    

1.  Object-Oriented Programming 

OOP has redefined the ways software developers think about and design their 

programs.  Traditional, procedure-structured programming focuses on the design of 

algorithms and using data structures to manipulate those logic functions.  OOP reverses 

this approach, focusing first on the design of the data structures and then incorporating 

functions into the data structures.  “Simply stated, object-oriented design is a technique 

that focuses design on the data (= objects) and on the interfaces to it.”  (Hortsmann and 

Cornell, 1997) 

A central concept in OOP is designing the data structures, or objects, such that 

each is responsible for executing a group of related tasks.  When an object relies on 

functions or properties of another object, the former should “ask” the latter for the desired 

information via method calls rather than directly manipulate that object’s data.  In this 

manner, internal data and information remains hidden within objects.  This principle of 

data hiding, referred to as encapsulation, enhances reusability and tends to minimize the 

time it takes to debug programming errors. 
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In OOP classes are templates for objects.  The class is the single most important 

component in OOP design because it is the blueprint from which an object is actually 

constructed.  When one creates an object using a class template, one is said to instantiate, 

or create an instance of, an object.  For example, with a line of code like 

SPArtillery artillery = new SPArtillery(); 

the new operator is used to create an artillery object (instance) of the SPArtillery 

class.  In OOP terminology, the object is instantiated.  In OOP each object generally 

consists of accessible functions, or methods, and data, or instance variables. 

OOP allows one class to inherit the behavior, or methods and instance variables, 

of another.  The motivation for this modeling principle, commonly called inheritance, 

includes reuse and abstracting common elements among classes.  Other terms related to 

inheritance are superclass, subclass, and extends.  The class from which another class 

inherits its functionality is called the superclass; the inheriting class is the subclass.  Said 

another way, the subclass extends the superclass.  The notion of extending a class is 

attractive because one is able to reuse the desirable behaviors of the superclass; at the 

same time, one is able to add or change behaviors to adapt to changing needs or for the 

purpose of specialization.  To extend a class in Java, one uses the keyword extends.  

For example, the line 

public class DD21 extends NSFSShip { 

says that the DD21 class inherits the behavior of the NSFSShip class. 

Unlike some OOP languages, Java does not allow multiple inheritance.  That is, a 

Java class can extend only one class.  However, Java provides the notion of an interface, 

a powerful feature that affords the developer the ability to abstract common methods 
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from more than one class.  The interface construct in effect replaces multiple inheritance 

of classes with multiple inheritance of interfaces.  An interface, which contains no 

concrete methods or variables of its own, is essentially a contract signed by any class that 

implements it.  The contract is to provide, or implement, every method in the interface.  

The implementing class is free to decide the internal workings of those methods.  For 

example, NSFSSim uses a Weapon interface that consists of the following lines of code: 

public interface Weapon { 
       public double getMaxRange(); 
         public double getLethalRadius(); 
         public double getProbKill(Mover target); 
      } 
 

The NSFSWeapon class implements the Weapon interface by using the keyword 

implements: 

public class NSFSWeapon extends SimEntityBase implements Weapon { 

This code promises that the NSFSWeapon class will have a getMaxRange method, a 

getLethalRadius method, and a getProbKill method that takes a Mover object.  

Mover itself is an interface implemented by the BasicMover class in Simkit. 

2.  The Listener Pattern 

Java’s interfaces can be used to implement a “listener pattern,” another important 

modeling principle utilized extensively in Simkit.  Implementing classes use the 

Listener interface for the purpose of handling events, specifically GUI events such as 

mouse clicks.  The idea here is that a model’s view should change in response to GUI 

events.  The listener pattern enables an interested “listener” to be notified of events as 

they occur so that views may be modified accordingly.  Java’s event handling mechanism  

can be summarized in the following manner (Horstmann and Cornell, 1997): 
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• A listener object is an instance of a class that implements a special 
interface called (naturally enough) a listener interface. 

• An event source is an object that can register listener objects and send 
them notifications when events occur.  These notifications are methods of 
the listener interface. 

 

A listener object is registered with the source object with the following general 

line of pseudo-code: 

 EventSourceObject.addEventListener(EventListenerObject); 

Simkit applies the same event-notification pattern but emphasizes simulation events and 

object state changes.  Simkit’s listener pattern, likewise, is implemented with one line of 

code: 

  SimEventSource.addSimEventListener(SimEventListener); 

In Simkit a SimEventListener object registered to a SimEventSource will be 

notified of each SimEvent (a Simkit method with the prefix “do”) for which it has an 

identical event.  Suppose, for example, that a CounterBattery object named radar is 

registered as a SimEventListener with an ArtilleryBattery object named 

battery.  The code would look something like this: 

battery.addSimEventListener(radar); 

Now suppose that the ArtilleryBattery class has a “FireRound” event constructed as 

follows: 

   public void doFireRound() { 
         …internal code for this method 
        } 
   
If the radar instance wants to be notified of the battery’s “FireRound” event, the 

CounterBattery class would have to have a method with exactly the same method 

construction—that is, a public void doFireRound() method, in which the internal 
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code may be different from that of the source method in the CounterBattery class.  

Simkit’s implementation of the listener pattern enables efficient event handling within a 

simulation model with little more than a few lines of code. 

3. Third Party Components 

  In addition to making extensive use of Simkit’s SimEventListener pattern, 

NSFSSim borrows Simkit’s notion of third party components.  Simkit provides a non-

partisan Referee class to adjudicate detections within a simulation.  The Referee’s 

tasks include maintaining a list of all targets and sensors and scheduling detections when 

a Mover or a Sensor starts moving.  Like Mover, Sensor is an interface.  Generally 

speaking, when the Referee determines that a target is within the range of a sensor, the 

Referee by default creates a CookieCutterMediator instance that implements the 

Mediator interface.  In this manner, a mediator is created only when needed and is 

responsible for adjudicating the actual interactions between a single sensor and a single 

target.   

Because movers and sensors should not be entrusted with the responsibility of 

determining their own detections, the referee and mediators are created as third party 

components to serve as honest brokers in the determination of sensor-target interactions.  

Although NSFSSim does not utilize Simkit’s existing Referee and 

CookieCutterMediator classes, it applies the same modeling principles to build 

third party components to adjudicate the interactions between weapons and targets.  

These components will be discussed at the end of the chapter. 
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4. Manager Components 

Whereas third party components are not allied with a particular side in a combat 

simulation, manager components within NSFSSim are created with the express purpose 

of directing the actions of a particular Mover implementation.  The use of managers is a 

practical application of object-oriented or component-based design.  In its most 

rudimentary form, a mover is responsible for executing movement events and reporting 

its implicit state within the discrete-event paradigm.  A mover’s manager serves in a 

command and control capacity to direct the mover to its next location and schedule other 

events that may be associated with the mover depending on its classification.  For 

example, an ArtilleryBatteryManager instance directs its subject artillery 

battery to random locations on a two-dimensional battlefield and schedules 

“StartEmplacement,” “EndEmplacement,” “FireRound,” “StartDisplacement,” and 

“EndEmplacement” events for the artillery battery.  From a design standpoint, using 

manager components to separate basic movement functions from other actions is 

desirable.  Once again, this modeling concept serves to increase reusability and minimize 

debugging time.  

Having provided a brief introduction to the modeling principles and terminology 

used in NSFSSim, we now turn to a description of the physical structure of NSFSSim and 

the actual classes used to build the simulation model. 

C. NSFSSIM STRUCTURE 

NSFSSim consists of a Java package named “nsfssim,” an input data directory, an 

icon directory that contains graphical images to populate the model’s views, a default 
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output directory, and a help directory.  Each set of simulated engagements may either be 

viewed in the animation mode (Fig. 2), as a textual display of the event list, or in “silent” 

mode; Appendix B discusses the creation of animation in NSFSSim.  Pertinent data is 

collected throughout and is written to a default text file in the output directory at the 

conclusion of each set of runs. 

 

Figure 2.  NSFSSim’s Animation Mode 

The animation mode provides a visual display of the running simulation.  This screen 
shot shows two DDG 51’s and one DD 21 on station conducting NSFS.  A CG 47 
cruiser is enroute to the ammunition onload rendezvous point to replenish its 
ammunition inventory.  Artillery batteries are depicted in the foreground.  Those 
rendered in red are at full strength.  Any battery rendered in yellow is firing artillery 
rounds.  Each gray battery has had one or more of its guns destroyed.  An explosion 
indicates that at least one gun in a battery has just been destroyed.  Once a battery has 
had all its guns destroyed, it is removed from the screen (left explosion).  The white 
semi-circles depict ERGM (G) and LASM (M) fired from the surface combatants. 
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Because NSFS is conducted by surface combatants whose stand off ranges 

minimize their susceptibility to enemy counterattack, NSFSSim uses a predator-prey 

design.  That is, the NSFS ships within the model are  “predators” that use tactical fires to 

defeat enemy self-propelled and towed artillery batteries, the “prey.”  As the names 

imply, during the course of a simulated engagement, the ships are invulnerable, while the 

artillery batteries invariably are attrited.   

Although real-world threats pose formidable challenges in the realm of 

simultaneity of missions, the thesis’ singular scope of investigating favorable NSFS 

gun/missile firing policies obviated the need to model other mission areas.  As such, no 

enemy surface combatants, aircraft, or submarines were modeled.  Furthermore, Marines 

and Army troops, for which NSFS is designed to protect and empower, were omitted 

from the model.   

NSFSSim models such entities as the NSFS surface combatants of the next 

decade, two of the advanced NSFS weapons that are being developed to advance 21st 

century warfighting concepts, and two types of enemy field artillery batteries.  The 

movers exhibit simple linear motion and interact on a two-dimensional battlespace.  

These simplifying assumptions are made possible due to the fact that ERGM and LASM 

will use GPS assets only for precision guidance to each weapon’s respective aim point.  

The weapons’ lack of active radar seekers precluded the necessity of modeling the target 

acquisition process, which otherwise would have mandated the extension of the 

battlespace to a third dimension and would have introduced the problem of weapon-target 

geometry.   The entities that will execute the firing policies that are being investigated in 

this thesis are NSFSShip instances. 
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D. NSFS SHIPS 

Figure 3 illustrates the class hierarchy for NSFS ships in NSFSSim.  

    Simkit

NSFSSim

CG47...
maximum speed,

number of ERGM,
number of LASM

DD21...
maximum speed,

number of ERGM,
number of LASM

DDG51...
maximum speed,
number of ERGM,
number of LASM

NSFSShip...
firing policy, stand off range,

target stale time,
ammunition onload time

BasicMover

 

           Figure 3.  NSFSShip Component Hierarchy 

The NSFSShip class extends Simkit’s BasicMover class.  
CG47, DD21, and DDG51, in turn, subclass NSFSShip.  
The italicized text within each box indicates modifiable 
input parameters. 

 
The NSFSShip class is the superclass for the surface combatants in NSFSSim. 

NSFSShip itself extends the BasicMover class in Simkit.  Therefore, each NSFS 

ship inherits the behavior of a BasicMover.  Specifically, each ship exhibits uniform 

linear motion.  Additionally, NSFSShip entities share the following user-specified 

parameters: firing policy, stand off range, ammunition onload time, and target stale time 

(i.e., the maximum time a target aim point can reside in the engagement queue before it is 

deleted).   

The software components used to model the surface combatants include the 

DD21, DDG51, and CG47 classes, each extending NSFSShip (Fig. 3).  While the names 

of the ship classes may appear to be confining, some flexibility is provided to uniquely 
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configure each ship type.  Maximum ship speed as well as ERGM and LASM inventories 

may be specified for each ship class.  The model’s user may specify the creation of as 

many of each of the surface combatants as he desires.   

For each DD21, DDG51, and CG47 that is created, NSFSSim instantiates a 

manager component, which is discussed in the following section. 

E. NSFS SHIP MANAGERS 

Each NSFSShip is controlled by an individual ShipManager instance.  Based 

on the firing policy, the manager directs the execution of its designated ship’s fire 

mission.  The firing policy is an independent “variable” specified by the user prior to a 

set of runs.  In NSFSSim, a firing policy consists of a sequence of characters, or a Java 

String—g’s, G’s, m’s, M’s, l’s, and L’s are the only accepted characters—where a “g” or 

a “G” represents a “ShootGun” event, an “m” or an “M” corresponds to a “ShootMissile” 

event, and an “l” or an “L” schedules a “Look,” or kill assessment event.  For example, to 

specify a Shoot (missile), Look, Shoot (missile) firing policy, one would enter either the 

String “mlm” or the String “MLM” in the NSFSShip firing policy field in NSFSSim’s 

setup dialog (Fig. 4). 

As long as the NSFSShip has sufficient numbers of ERGM and LASM 

remaining to fully execute the firing policy, its ship manager will cause it to conduct 

assigned NSFS missions.  If, for instance, the promulgated firing policy was to fire three 

ERGM followed by launching two LASM—“GGGMM”—at a given aim point, the 

ShipManager would direct the firing of the specified sequence of rounds and missiles 

using the ship’s available gun(s) and launcher(s).  The user may specify the probability 
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distributions that underlie the ShipManager class’ processing time and firing duration 

between shots.  The default times are derived from Uniform(a, b) distributions. 

 

Figure 4.  Specifying a Firing Policy 

NSFSSim’s setup dialog allows the user to modify 
parameters related to the histogram output, NSFSShip 
properties, number of model entities, simulation controls, 
and battlefield coordinates.  This screen shot shows user-
selection of the NSFSShip tab and the highlighting of the 
firing policy field.  The String “MLM” indicates a Shoot 
(missile), Look, Shoot (missile) firing policy. 

 

Once a ship’s ERGM and/or LASM inventories are depleted below the level 

necessary to carry out the firing policy, the corresponding ship manager directs the ship 

to a user-specified ammunition onload rendezvous point.  In actual combat conditions, a 

surface combatant likely would expend all its munitions and missiles prior to departing 

the operating area to replenish its ammunition.  However, because this thesis only 

investigates the implications of specific firing sequences on enemy artillery battery 

effectiveness, NSFSSim in its present form disallows this eventuality.  Future 

applications, on the other hand, could easily alter this behavior by extending the 

ShipManager class and rewriting a single method.   

As would be the case in actual NSFS operations, the NSFSShip instance is 

unavailable for fire missions during the time it takes the ship to complete the ammunition 
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onload and return to station.  Upon completion of the ammunition onload, the ship’s 

ERGM and LASM inventories are reset to their initial levels.  Back at its initial station, 

the ship once again is available to execute NSFS missions received from the mission- 

scheduling component, which will be discussed next. 

F. NSFS MISSION SCHEDULING 

Mission scheduling functionality resides within an instance of the 

NSFSMission class.  The scheduler’s logic in the present version is simple.  From the 

set of ships that are on station and within maximum weapons release range of a mission 

aim point, the NSFSMission object randomly chooses a designated ship.  This behavior 

can be altered easily to incorporate more complex shooter assignment and scheduling 

algorithms.        

There are two major NSFS missions—counterbattery and call fire missions, both 

of which must be highly responsive in order to protect troops in contact and enable 

tactical maneuvers against the enemy.  In the most general terms, a counterbattery 

mission is one that is initiated by countertargeting radar that detects the firing of enemy 

artillery rounds.  Based on the trajectories of the artillery rounds, the radar system 

calculates an estimate of the firing gun’s location.  Engaged troops or forward observers 

(FO), on the other hand, generally initiate call fire missions. 

NSFSSim creates two objects that generate these NSFS missions.  The 

CounterBattery object is an instance of the CounterBattery class and 

determines the need for counterbattery missions.  The CallFire instance is created 

from the CallFire class and generates call fire missions.   
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1. Counterbattery Missions  

NSFSSim’s CounterBattery object serves as a countertargeting radar. The 

CounterBattery class does not implement Simkit’s Mover and Sensor interfaces; 

as such, the CounterBattery instance does not possess coordinate locations or a 

maximum sensor range.   The CounterBattery instance relies solely on 

probabilities—specifically, the probability that its radar is on and the probability of 

detection—to determine the detection of individual artillery rounds.     

Figure 5 depicts the logic flow for the generation of counterbattery missions.  The 

CounterBattery instance listens to the “FireRound” event of each enemy artillery 

battery.  As each round is fired, the CounterBattery object randomly checks for 

counterbattery detection.  A detection occurs if two randomly drawn numbers are, 

respectively, less than the probability that the counter-targeting radar is active and the 

conditional probability of detection.  Both of the probabilities are user-defined 

parameters.  Given a detection, the CounterBattery instance generates a 

counterbattery mission against the subject battery.  Target location error (TLE) is applied 

to the location of a randomly chosen gun within the battery to produce the mission aim 

point.  The TLE distributions are x-coordinate and y-coordinate errors.  By default, the 

distributions are Uniform(a, b), but this may be modified by the user.  
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    Artillery battery
        executes a
 “FireRound” event

 Random draw
< P{radar on}?

 Random draw
  < P{detect}?

   Apply TLE to a
   randomly chosen
  gun in the battery

Generate counterbattery
mission w/ above aim pt

   No detectionYes

Yes

No

No

 

Figure 5.  The Logic of Counterbattery Mission Generation 

The random nature of NSFSSim’s counterbattery mission 
generation is intended to simulate the uncertainty inherent in 
combat.  Clearly, a counterbattery mission initiated at the 
beginning of a battery’s firing sequence has a better 
probability of success than one that is queued by detecting 
the last artillery round fired. 

 
 

2. Call Fire Missions  

The CallFire object generates calls for fire through an arrival process.  The 

user may change the probability distribution underlying the call for fire arrivals.  By 

default the probability distribution is Exponential(λ) so that the calls arrive according to a 
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Poisson process.  When a “CallForFireArrival” event occurs, the CallFire component 

randomly chooses one of the guns of an artillery battery and applies TLE to that location.  

At this point, the CallFire instance generates a call fire mission request with the 

calculated mission aim point. The x-coordinate and y-coordinate TLE distributions in the 

CallFire class are distinct from those in the CounterBattery class.  As is the case 

in the CounterBattery class, the default TLE distributions are Uniform(a, b), but 

these too can be modified by the user. 

Using the SimEventListener pattern, the requests for counterbattery and call fires 

are heard by the NSFSMission scheduler.  Once the mission scheduler makes an 

assignment, the designated ship’s manager is notified of the assignment and directs the 

execution of that mission.  It is worth noting that, due to the randomness of the mission 

generation methodology, NSFSShip objects will often fire at a moving artillery battery, 

leading to the wasted expenditure of NSFS weapons. 

The next section describes the component design of the targets of these NSFS 

missions—the enemy artillery batteries. 

G. ARTILLERY BATTERIES 

Figure 6 illustrates the ArtilleryBattery component hierarchy. The 

ArtilleryBattery class models enemy artillery batteries.  Like the NSFSShip 

class, this class subclasses BasicMover and is also extended by other 

classesSPArtillery and TowedArtillery.  Each artillery battery is instantiated 

as a single mover.  To model the battery characteristic, each instance has a vector of 

coordinates representing the individual gun locations within the battery.   
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Figure 6.  ArtilleryBattery Component Hierarchy 

The SPArtillery and TowedArtillery classes extend the 
ArtilleryBattery class, which subclasses BasicMover. The 
user-defined data parameters are shown.  Note that the 
italicized parameters represent probability distributions. 

 
SPArtillery and TowedArtillery objects possess the same state 

variables.  However, the specification of these variables is left to the user.  Therefore, the 

characteristics of one battery type can be identical to that of the other, or as different as 

the user desires them to be.  Realistically, the performance and vulnerability 

characteristics should be different.  It is generally accepted that SPA gun systems are 

more capable and less vulnerable than towed guns.       

Future SPA systems, such as the U.S. Army’s developmental 155mm Crusader 

self-propelled howitzer XM2001, will possess state-of-the-art system survivability 

enhancement features.  Most importantly, these weapon systems will possess increased 

mobility, speed, and firepower over today’s field artillery systems.  Automated 

rearmament—to include projectiles, charges, fuel, water, and lubricant—will increase 
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crew survivability by keeping the crew under armor, enabling continued availability for 

missions.  (Foss, 1998) 

Towed artillery systems, as the name implies, are less mobile than SPA systems.  

Reduced mobility on the battlefield equates to reduced survivability.  Moreover, towed 

artillery guns do not enjoy the armored protection usually found on SPA weapons.  

Compounding this vulnerability is the higher manning level required to operate and 

maintain the towed systems.    

In the execution of fire missions, however, SPA and towed artillery systems share 

common functionalities.  NSFSSim structures artillery missions as a sequence of 

variable-time events: 

• Movement to the geographic firing location 

• Emplacement (i.e., preparations made prior to firing such as positioning  

spades and shooting azimuths) 

• Firing of artillery rounds (the model assumes that each battery has an 

infinite ammunition inventory) 

• Displacement (i.e., preparations made in advance of movement such as 

gun stowage for travel) 

• “Scoot” (i.e., movement to a new location in avoidance of counterfire)                 

If, after emplacement, an artillery battery loses one or more of its guns to NSFS weapons 

fire, it immediately conducts a hastened, emergency displacement and scoots to a new 

location.  The artillery battery in this case is deemed to be in distress and is unavailable to 
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conduct fire missions until it ends its “Scoot” event.  The time it takes to conduct the 

emergency displacement as well as the above listed events are random times taken from 

probability distributions.  Once again, the user may modify these distributions; by 

default, they are Uniform(a, b). 

 As is the case with the NSFS ships, each artillery battery is controlled by a 

manager component, which will be discussed next. 

H. ARTILLERY BATTERY MANAGERS 

The ArtilleryBatteryManager class provides the template for the 

creation of manager components that direct the missions of individual artillery batteries.  

To allow for future specialization, this class is subclassed by SPArtilleryManager 

and TowedArtilleryManager. Each manager instance is responsible for directing 

fire missions, as defined in the previous section.  In controlling movement events, the 

managers choose uniform random locations on the two-dimensional battlefield, taking 

into account the stand off range of the surface combatants.             

The actual firing sequence scheduled by a manager component depends on a 

number of factors.  The number of “FireRound” events executed during an uninterrupted 

fire mission is determined by multiplying the number of surviving guns in the battery by 

the individual gun salvo size.  The user may specify the salvo size, which by default is 

four rounds.  The duration of the firing sequence is also dependent on the gun’s rate of 

fire as defined by a firing duration probability distribution.  This, too, can be modified by 

the user, the default being Uniform(a, b).  The emplacement and displacement events that 
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are conducted, respectively, prior to and following the firing sequence are merely time 

delays placed on and removed from the event list.  

Artillery battery fire missions are generated in a similar fashion to call fire 

missions.  NSFSSim’s user is expected to provide an arrival probability distribution for 

each of the two artillery battery types.  The default mission arrival process for both 

battery types is the Poisson process.  Fire mission generation and assignment are the 

responsibility of a single instance of the EnemyMission class.  This object uses simple 

queuing theory to decide the assignments.  When a towed artillery mission arrival occurs, 

for example, the EnemyMission instance assigns the mission to the 

TowedArtillery object with the smallest mission queue.  Using the listener pattern, 

each ArtilleryBatteryManager object listens for these fire mission assignment 

events. The longer the artillery batteries remain in one location emplacing, firing rounds, 

and displacing, the bigger the window of opportunity for the NSFS weapons to achieve 

battery kills.      

The next section discusses the components that model developmental NSFS 

precision munitions and missiles.    

I. NSFS WEAPONS 

The NSFSWeaponMover component hierarchy is depicted in Figure 7. The 

Weapon interface, introduced in Section B, provides methods for obtaining a weapon’s 

maximum range, lethal radius, and probability of kill (PK) against a given Mover object.  

The NSFSWeaponMover class extends BasicMover and implements the Weapon 
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interface.  The ERGMMover and LASMMover classes extend NSFSWeaponMover and 

represent developmental precision-guided NSFS munitions and missiles, respectively.   
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maximum range 1
maximum range 2
PKs vs SPA
PKs vs towed artillery
x-coordinate error
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maximum speed
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maximum range 2
PK vs SPA
PK vs towed artillery
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y-coordinate error

LASMMover...

NSFSWeaponMover

BasicMover

 

Figure 7.  NSFSWeaponMover Component Hierarchy 

The ERGMMover and LASMMover classes extend the 
NSFSWeaponMover class, which subclasses BasicMover. 
The user-defined data parameters are shown.  The italicized 
parameters denote probability distributions. 

 

An ERGMMover object is created each time a ship manager schedules a 

“ShootGun” event.  Similarly, a “ShootMissile” event instantiates a LASMMover object.  

Each NSFSWeaponMover instance possesses the following modifiable parameters: 

maximum speed, lethal radius, maximum range 1 (used if the weapon is fired from a 

CG47 or DDG51 instance), maximum range 2 (in the case that the weapon is fired from a 

DD21 instance), x-coordinate error probability distribution, and y-coordinate error 

probability distribution.   
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ERGMMover and LASMMover instances also have user-specified, lethal radius-

dependent PK values against SPArtillery and TowedArtillery instances.  

Because LASM is planned to contain a unitary warhead, the model allows the 

specification of only one lethal radius for the LASMMover class.  The value of this lethal 

radius must match exactly the lethal radius specified to obtain the PK value against each 

artillery type.  On the other hand, ERGM will feature a variable dispense diameter 

capability.  The achievable dispense diameters will be 20 m, 40 m, 60 m, 80 m, and 100 

m.  Accordingly, NSFSSim provides the user the capability of specifying five different 

PK values for each of the two artillery battery types.  Once again, for each battery type, 

the ERGMMover class’ specified lethal radius must match one of the values required to 

obtain the PK values.  

Each instantiation of an NSFSWeaponMover instance is accompanied by the 

creation of a weapon manager component.  The NSFSWeaponManager class serves to 

control the flight of individual weapons and is subclassed by the ERGMManager and 

LASMManager classes.  These managers are responsible only for applying weapon 

errors to the given aim point and then directing the specified weapon to the newly 

adjusted coordinates.  At the end of a weapon’s flight, a “WeaponImpact” event occurs.  

This event is heard by a third party component called the NSFSReferee. 

J.  NSFS REFEREE AND WEAPON TARGET MEDIATORS 

The NSFSReferee object maintains registries of all the entities created at 

simulation run time.  As NSFS ships, artillery batteries, and weapons change states, they 

may register or unregister with the referee. For example, when all of the guns in an 
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artillery battery are destroyed, the battery permanently unregisters, becoming unavailable 

to conduct fire missions or to be the target of NSFS missions.  Similarly, when a 

NSFSShip instance departs to replenish its ammunition inventories, it unregisters with 

the NSFSReferee so that it becomes unavailable for NSFS mission assignments.  The 

NSFSShip is added back to the ship registry when it returns to station. 

In addition to performing this bookkeeping function, the referee works with a 

WeaponTargetMediator instance to adjudicate NSFSWeaponMover hits and 

misses.  Each time the referee hears a “WeaponImpact” event, it directs an instance of the 

WeaponTargetMediator class to mediate the outcome of the weapon’s impact.  

The WeaponTargetMediator instance checks all of the gun locations of each 

registered ArtilleryBattery object. NSFSSim’s BatteryFormation class is 

responsible for computing the actual gun locations.  Given a user-specified gun 

separation value, each BatteryFormation instance positions an artillery battery’s guns in a 

“Lazy W” pattern, the orientation of which is randomly decided at run time.  As the name 

implies, the Lazy W pattern is a configuration in which the guns appear to form one or 

more linked “W’s.” This formation is commonly used to organize U.S. Army field 

artillery batteries, which nominally consist of six guns (Fig. 8).  Figure 9 describes the 

logic flow for the adjudication of weapon-target interactions.   
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Figure 8.  Typical “Lazy W” Battery Formation 

This figure illustrates a typical battery formation consisting of six SPA guns 
dispersed over a 100 m x 300 m area.  The circle shows the dispense 
diameter around the impact point of one ERGM round.  In this case, the 
WeaponTargetMediator would conduct two independent, random draws to 
determine the kill assessments for the two guns located within the round’s 
lethal area.   
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Figure 9.  WeaponTargetMediator Logic 

An artillery gun that lies within the destructive pattern of an NSFS 
weapon is destroyed with a certain probability of kill. 
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For those guns that lie within the lethal radius of the NSFSWeaponMover’s 

impact point, the mediator conducts an independent random draw to determine hit or 

miss.  If the random draw is less than the NSFSWeaponMover’s PK value, for the 

specified lethal radius, against the particular artillery type, the mediator determines that a 

gun is destroyed.  As mentioned previously, the determination of one of more gun kills 

while a battery is stationary causes the battery to conduct an emergency emplacement.  

The mediator performs this check for each registered artillery battery.     

Having completed an overview of NSFSSim’s simulation components, Chapter 

III will summarize the analysis using NSFSSim. 
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III.   ANALYSIS USING NSFSSIM 

The previous chapters discussed the rationale behind the creation of NSFSSim as 

well as the modeling principles and components that provide the framework for the 

simulation model.  This chapter summarizes the type of analysis that can be conducted 

using NSFSSim and briefly describes the use of the model.  Recall that NSFSSim was 

constructed to analyze two specific problems: 

1) Determine the best firing policy for ships conducting NSFS against mobile 
targets. 

 
2) Determine the most effective ERGM dispense diameter against a given mix of 

artillery batteries. 
 
Before describing the scenario used to analyze these issues, it is necessary first to discuss 

NSFSSim’s relevant Measures of Performance (MOP) and the selection of an appropriate 

Measure of Effectiveness (MOE). 

A. MEASURES OF PERFORMANCE 

NSFSSim collects pertinent MOP data during each set of runs.  These measures 

include: 

• The average number of SPA missions conducted 

• The average number of towed artillery missions conducted 

• The average number of counterbattery missions conducted 

• The average number of call fire missions conducted 
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• The average number of artillery rounds fired 

• The average number of ERGM fired 

• The average number of LASM launched 

• The average number of SPA guns destroyed 

• The average number of towed artillery guns destroyed 

• The average number of SPA batteries destroyed 

• The average number of towed artillery batteries destroyed 

From this set of values, one can formulate several MOE alternatives to measure NSFS 

ship firing policy effectiveness against the artillery batteries.  Obvious choices include 

analysis of alternatives (AOA), attrition-type measures such as the average number of 

total artillery guns destroyed divided by the number of NSFS weapons fired or, similarly, 

the average number of total artillery batteries destroyed divided by the number of NSFS 

weapons fired.  Another MOE alternative is simply the average number of rounds fired 

by the enemy artillery batteries. 

B. MEASURE OF EFFECTIVENESS SELECTION 

The most appropriate MOE to measure the effects of firing policy changes on 

enemy artillery battery effectiveness appears to be the last alternative mentioned, the 

average number of rounds fired by the enemy artillery.  An assumption in NSFSSim is 

that the destruction of at least one gun in a stationary artillery battery will cause the 
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battery to conduct an emergency displacement and move to a new location on the 

battlefield.  All other events including the firing of artillery rounds are interrupted as a 

result of the emergency displacement.  Therefore, an artillery battery that spends most of 

its time scooting to new locations will not fire as many rounds as one that remains mostly 

free from the harassment of effective NSFS weapon employment.  Within this context, a 

truly effective firing policy is one that causes artillery batteries to scoot before they are 

able to fire their rounds.  Having selected an appropriate MOE, the next section will 

describe the scenario used in the preliminary analysis using NSFSSim. 

C. SCENARIO DESCRIPTION 

The resolution of NSFSSim in its present state is limited, and actual data 

necessary to populate the model is either classified or unknown.  As such, the scenario 

constructed to address the problems of firing NSFS weapons against mobile targets is a 

notional one using open source data.  However, the scenario is reasonable for the 

purposes of this thesis and yields some useful insights. 

The scenario is a seventeen-hour battle consisting of four surface combatants—

two Aegis destroyers, one Aegis cruiser, and one 21st Century destroyer—conducting 

counterbattery and call fire missions against an even mix of six SPA batteries and six 

towed artillery batteries. The guns in each battery have a lateral separation of 

approximately 100 m, and each gun fires four rounds during an uninterrupted mission. 

The battlefield is a 230 nm by 65 nm rectangular region.  The NSFS ships stand off 25 

nm from the coast line, and the artillery batteries maneuver no closer than 15 nm to the 

coast.  Therefore, LASM and ERGM, with speeds of mach 2.0 and mach 0.9, 
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respectively, must travel at least 40 nm to their aim points.  The ship magazines are 

loaded such that, during the course of the seventeen-hour scenario, each ship likely will 

go off line to replenish its ammunition inventory at least once or twice.  Each ammunition 

onload event lasts three hours, and it is assumed that there is no upper bound on the 

number of onload events that can occur simultaneously.  The onload rendezvous point is 

located such that traversal times to and from the point equate to an additional hour of off 

station time for the replenishing ships.      

 SPA battery missions arrive more frequently than towed artillery missions.  While 

both artillery battery types have a speed of 45 kph, SPA batteries on average have shorter 

dwell times than do the towed artillery batteries.  In addition, by virtue of the NSFS 

weapon PK values against the artillery types, the SPA batteries are less vulnerable to 

destruction than are the towed types. 

 The next sections discuss some preliminary analysis using the NSFSSim model.   

D.  FIRING POLICY INVESTIGATION 

A set of 100 runs without NSFS missions was conducted to establish a baseline 

measure of average rounds fired when artillery batteries are not targeted.  Figure 10 

shows the corresponding NSFSSim histogram for the number of artillery rounds fired.  

Figure 11 is a screen shot of NSFSSim’s text editor showing the pertinent summary 

statistics of the baseline scenario.  When no NSFS weapons are fired at the artillery 

batteries, the batteries fire on average 1355 rounds during a seventeen-hour period. 
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            Figure 10.  Baseline Histogram of Artillery Rounds Fired 

If the histogram option is enabled in NSFSSim, the user is 
prompted to specify one of seven statistics to be graphed 
in a histogram that can be displayed at the end of a set of 
runs.  This screen shot shows a histogram of the number of 
artillery rounds fired during 100 runs in which no NSFS 
weapons are fired. 
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Figure 11.  NSFSSim’s Text Editor 

NSFSSim’s text editor can open, modify, and save any text file.  
At the conclusion of a set of runs, the user can open the default 
output file and read the pertinent data for the completed runs.  
This screen shot shows the default file for the baseline scenario 
in which no NSFS weapons are fired.  Note that on average 41 
SPA missions and 27 towed artillery missions are conducted 
when the artillery batteries are unharassed. 

 

The first firing policy tested was a sequence of five ERGM followed by three 

LASM, or “GGGGGMMM.”  The ERGM dispense diameter was set at 60 m.  This 

scenario was performed 100 times.  Figures 12 and 13 show the text editor frame and 

histogram frame, respectively, for this particular scenario.   
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Figure 12.  Firing Policy GGGGGMMM 

During each counterbattery or call fire mission, each surface 
combatant fired five ERGM and launched three LASM in 
executing this firing policy.  The times between the weapon 
firings were drawn from the specified firing duration distribution.   
With this firing policy the average number of artillery rounds 
fired was reduced from the baseline level to approximately 729 
rounds during each seventeen-hour battle. 
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Figure 13.  Histogram for GGGGGMMM Firing Policy 

This screen shot shows the corresponding histogram of the               
number of artillery rounds fired when the NSFS ships used a 
GGGGGMMM firing policy.  The mean value obtained by 
performing 100 runs was approximately 729 rounds. 

 

The next firing policy examined was also a sequence of five ERGM and three 

LASM.  This time, however, the missiles were launched prior to the firing of the 

precision roundsa MMMGGGGG firing policy—to determine whether or not the order 

of the weapons fired has an effect on the effectiveness of the enemy artillery batteries.  

This scenario was performed for a set of 100 trials.  With this firing policy, the average 

number of artillery rounds fired was approximately 692 rounds.  Figures 14 and 15, 

respectively, show the default output file and histogram for this firing policy 

implementation. 
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Figure 14.  Firing Policy MMMGGGGG 

By launching the missiles first, the NSFS ships improved upon 
the MOE that was achieved by firing ERGM rounds first.  The 
number of artillery rounds fired during each run using the 
MMMGGGGG firing policy on average was approximately 692 
rounds. 
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Figure 15.  Histogram for MMMGGGGG Firing Policy 

For this firing policy, the mean number of artillery rounds 
fired during each simulation run was 692.31 rounds.  As 
before, the histogram was produced by conducting 100 
simulation runs. 

 

From the previous observations, it appeared that launching LASM, which is faster 

and more lethal than ERGM, earlier in the firing sequence decreased the effectiveness of 

the artillery batteries.  Further testing with different numbers of missiles and munitions 

but the same structure yielded similar results.  In order to determine if the differences in 

the mean number of rounds fired using the GGGGGMMM and the MMMGGGGG firing 

policies is statistically significant, a two-sample t-test was performed.  The t-test was 

deemed appropriate because of the relatively large sample sizes involved and because the 

histograms showed comparable sample variances.  The t-test produced a p-value of 

0.0276.  Therefore, at a significance level of 0.05, it was concluded that the true mean 

values are significantly different.  This result was not surprising because the 
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responsiveness of NSFS weapons is tremendously important to the success of NSFS 

missions.   

Somewhat surprising were the results for a MMGGGG firing policy.  That is, two 

LASM and four ERGM per NSFS mission on average resulted in the firing of fewer 

artillery rounds by the enemy batteries.  The output from 100 runs using this firing policy 

are shown in Figures 16 and 17.  

 

Figure 16.  Firing Policy MMGGGG 

This firing policy on average resulted in the artillery batteries’ 
firing of approximately 669 artillery rounds per simulation run.  
Therefore, the selected MOE showed an improvement when the 
ships used six weapons instead of eight weapons as in the 
MMMGGGGG firing policy. 
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        Figure 17.  Histogram for MMGGGG Firing Policy 

Repeated for 100 simulation runs, the MMGGGG firing policy resulted in an average 
of 669.20 artillery rounds fired by the artillery batteries during each battle.   

  

The improvement in the MOE using fewer weapons may be attributable to the 

fact that firing more weapons each mission will force the surface combatants to depart 

their stations earlier and more often to take on more ammunition.  This is a likely causal 

factor because the seventeen-hour scenario specifies an offstation time of four hours, 

during which time the replenishing ship is unavailable for counterbattery and call fire 

missions.    

The next section presents a brief synopsis of preliminary analysis using different 

ERGM dispense diameters. 
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E.  VARYING ERGM DISPENSE DIAMETER  

The next question addressed in the study was whether an optimal ERGM dispense 

diameter existed for the given mix of artillery batteries in the scenario.  In this analysis 

the MMMGGGGG and MMGGGG firing policies were used once again.  For each set of 

100 runs implementing one of the two specified firing policies, the ERGM dispense 

diameter was varied from 20 to 100 m in increments of 20 m (runs using a 60 m dispense 

diameter were completed for the previous analysis).  Figure 18 shows the results of the 

ten sets of runs.     
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Figure 18.  Effect of Varying ERGM Dispense Diameter 

The plot shows that for this particular scenario an ERGM dispense diameter of 80 m 
on average resulted in the best results for MMGGGG and MMMGGGGG firing 
policies.  That is, the enemy artillery batteries on average fired fewer rounds when the 
surface combatants used an ERGM dispense diameter of 80 m. 
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This analysis revealed that, despite higher associated PK values, small dispense 

diameters produced unfavorable results against dispersed mobile targets.  Both a 60 m 

and 80 m ERGM dispense diameter resulted in marked improvements in the MOE, with 

the latter diameter fairing slightly better.  A 100 m dispense diameter, although providing 

a larger lethal area, tended to be less effective due to smaller associated PK values.  

Different firing policy implementations yielded similar results. 

This type of analysis could be extended easily to incorporate different mixes of 

SPA and towed artillery batteries or to include sensitivity analysis using varying battery 

characteristics.  Clearly, the analysis conducted in this thesis is only preliminary and 

further analysis with more detailed models using “real” data is required.  However, the 

analysis revealed some useful insights and emphasized the need for further model 

development and research.   
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IV.   CONCLUSIONS AND RECOMMENDATIONS 

A. THE NEED FOR ANALYSIS 

This thesis has demonstrated the need for continued analysis in the area of tactical 

employment of advanced NSFS weapons.  While the development of such sophisticated 

weapons as ERGM and LASM has proceeded with the momentum of adequate funding, 

weapons systems integration and tactical considerations remain at the conceptual stages.  

Compared to the relatively low cost of today’s 5 inch rounds, these advanced weapons 

will be quite costly.  Therefore, efficient utilization of these weapons in support of NSFS 

is an important issue.  Moreover, the emergence of more capable, more mobile enemy 

weapons systems demands that these NSFS weapons be optimally employed.  The Naval 

Surface Fire Support Simulation (NSFSSim) model has yielded some useful insights into 

the question of NSFS gun and missile employment against mobile targets, but further 

analysis using more complex models is required.             

B. DEVELOPMENT OF NSFSSIM 

Some studies addressing NSFS issues have used successfully a consortium of 

combat models to capture the complexities of the Joint land battle.  However, due to the 

rigid design of these simulation models, major modification to existing code generally is 

required to enable the models to work together.  This thesis pursues a one model 

approach, creating a new simulation model (NSFSSim) that features substantial 

flexibility such that it can operate on any hardware platform, can be extended easily to 



 60 

provide greater resolution, and can be modified readily for future applications.  NSFSSim 

is an analysis tool that allows the user to make changes to input parameters and run 

simulations without the burden of rewriting and recompiling any source code.  In its 

present form, NSFSSim provides methods for analyzing the effectiveness of different 

firing sequences as well as the effectiveness of various ERGM dispense diameters.     

C. RECOMMENDATIONS FOR FURTHER ANALYSIS 

Preliminary analysis using NSFSSim reaffirms the importance of the 

responsiveness, range, and lethality of NSFS weapons employed against mobile, short 

dwell time targets.  In particular, launching LASM early in a firing sequence is on 

average a better policy than launching the missiles after the ERGM rounds are fired.  

Additionally, setting the ERGM dispense diameter at 60 m or 80 m generally produces 

the best results against dispersed, mobile units.  To be sure, these preliminary findings 

should be tested against other scenarios.  In its present form, NSFSSim could be used to 

investigate the effectiveness of MRSI tactics against artillery batteries.  By setting the 

firing duration to 0.0 and using the same speed for all of the weapons, all of the weapons 

fired for a particular NSFS mission would impact at the same time. 

Further analysis with a more complex version of NSFSSim and “real” data is 

necessary to gain more insights into the problem of NSFS gun/missile firing policy.  

NSFSSim should be extended to use entities that exhibit more realistic movement.  

Sensors could be modeled as actual entities.   Enemy artillery batteries could be modeled 

with the capability of utilizing countermeasures and decoy tactics.  Furthermore, the 
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challenges facing surface combatants in the littorals should be modeled.  Some of these 

challenges include land-based aircraft, land and sea-based missile systems, and mines.   

       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 62 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 63 

APPENDIX A: DATA STRUCTURES IN NSFSSIM 

All of the input data in NSFSSim is stored within “ini” files in the data directory.  

The structure of an “ini” file lends itself to the creation of a data base in the form of a 

Hashtable of Hashtables, or a Hashtable2 instance.  The file “setup.ini” used in 

NSFSSim shows the typical structure of an  “ini” file: 

[NSFSShip] 
firingPolicy = mmgggg 
standOffRange = 130.0 
yCoordOffset = 250.0 
targetStaleTime = 0.0833 
ammoOnloadTime = 3.0 
 
[NumberEntities] 
nsfssim.CG47 = 1 
nsfssim.DD21 = 1 
nsfssim.DDG51 = 2 
nsfssim.SPArtillery = 6 
nsfssim.TowedArtillery = 6 
 
[AreaCoordinates] 
lowerLeftX = 0.0 
lowerLeftY = 0.0 
upperRightX = 750.0 
upperRightY = 480.0 
 
[UnrepCoordinates] 
xCoord = 418.0 
yCoord = 250.0 
 
[Simulation] 
numberOfRuns = 100 
stopTime = 17.0 
stopWhenTgtsDead = false 
singleStep = false 
verbose = false 
 
[Histogram] 
leftValue = 400.0 
rightValue = 1000.0 
numberOfCells = 15 



 64 

As illustrated by “setup.ini,” a block of related data is specified by [ ].  Within 

each block, there exists any number of key-value pairs (e.g., firingPolicy = mmgggg).   

The Hashtable2 class converts an “ini” file into a Hashtable of Hashtables so that one 

can access the value of a particular key-value pair by specifying the block and the key.   

NSFSSim provides a GUI that allows the user to modify and save the values within five 

“ini” files.  Hashtable2 and the classes that build this GUI are listed here:       

 

// The Hashtable2 class 

package nsfssim; 
 
import java.util.*; 
import java.io.*; 
import java.net.*; 
 
public class Hashtable2 extends Properties { 
 
// constructors 
   public Hashtable2() { 
 super(); 
   } 
  
   public Hashtable2(Properties prop) { 
 super(prop); 
   } 
 
   public Hashtable2(URL url) { 
 super(); 
 this.load(url);   
   } 
 
   public Hashtable2(File file) { 
 super(); 
 this.load(file);   
   } 
 
// instance methods 
   public void put(Object firstKey, Object secondKey, Object value) { 
 Hashtable values; 
 if (this.containsKey(firstKey)) { 
    values = (Hashtable) this.get(firstKey); 
 } 
 else { 
    values = new Hashtable(10); 
    this.put(firstKey, values); 
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 } 
 values.put(secondKey, value); 
   } 
 
   public Object get(Object firstKey, Object secondKey) { 
 Hashtable values; 
 Object returnValue = null; 
 if (this.containsKey(firstKey)) { 
    values = (Hashtable) this.get(firstKey); 
    returnValue = values.get(secondKey);  
 } 
 return returnValue;   
   } 
 
   public void load(String fileName) { 
      File file = new File(fileName); 
      if (file.exists() ) { 
         this.load(file); 
      } 
      else { 
         throw new IllegalArgumentException("File " + fileName + " not  
           found."); 
      } 
   } 
 
   public void load(URL file) { 
      this.load(new File(file.getFile())); 
   } 
 
   public void load(File file) { 
      int lineNumber = 0; 
      try { 
         FileReader instream = new FileReader(file); 
         BufferedReader input = new BufferedReader(instream); 
 
         StringTokenizer tokens = null; 
         Properties currentBlock = new Properties(); 
         String currentBlockName = ""; 
         for (String nextLn = input.readLine(); nextLn != null; nextLn  
           = input.readLine()) { 
            lineNumber++; 
            if (nextLn.startsWith(";") || nextLn.startsWith("#")) { } 
            else if (nextLn.startsWith("[") && nextLn.endsWith("]")) { 
               tokens = new StringTokenizer(nextLn, "[]"); 
               if (tokens.countTokens() == 1) { 
                  currentBlockName = tokens.nextToken(); 
                  currentBlock = new Properties(); 
                  this.put(currentBlockName, currentBlock); 
               } 
               else { 
                  throw new RuntimeException(" on line " + lineNumber  
                    + ":\n" + nextLn + "[# tokens = " +  
                    tokens.countTokens() + "]"); 
               } 
            } 
            else { 
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               tokens = new StringTokenizer(nextLn, "="); 
 
               switch (tokens.countTokens()) { 
                  case 0: 
                     break; 
                  case 1: 
                     currentBlock.put(tokens.nextToken().trim(), ""); 
                     break; 
                  case 2: 
                     currentBlock.put(tokens.nextToken().trim(),  
                       tokens.nextToken().trim()); 
                     break; 
                  default: 
                     throw new RuntimeException ( 
                       "Improper format in " + file + " on line " +  
                       lineNumber +":\n" + nextLn + "[# tokens = " + 
                       tokens.countTokens() + "]"); 
               } 
            } 
         } 
         input.close(); 
      } 
      catch (FileNotFoundException e) {System.err.println(e);  
        e.printStackTrace(System.err);} 
      catch (IOException e) {System.err.println(e);  
        e.printStackTrace(System.err);} 
   } 
 
   public Object put(Object key, Object value) { 
      if (value instanceof Map) { 
         return super.put(key, value); 
      } 
      else { 
         throw new IllegalArgumentException("Hashtable2 can only accept 
           Maps as values."); 
      } 
   } 
 
} 
 
 

 
// The INIFileEditor class 

 
package nsfssim; 
 
/** 
  *  This class edits an INI file.  
**/ 
 
import java.io.*; 
import java.util.*; 
import javax.swing.*; 
 
public class INIFileEditor { 
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// instance variable 
   private File file; 
   private JFrame frame; 
    
// constructor 
   public INIFileEditor(File fileName, JFrame f) { 
 file = fileName; 
      frame = f; 
 this.editFile(file); 
   } 
 
// instance method 
   public void editFile(File file) { 
 INIFileReader reader = new INIFileReader(file); 
      JTextField[] fields = reader.getValueFields(); 
      JPanelDialog d = new JPanelDialog(frame, file.toString(), true,  
        reader, fields, null); 
      d.show(); 
      if (d.getValue() != null) { 
         StringTokenizer tokens = new StringTokenizer(d.getValue()); 
         if (tokens.countTokens() == ((String[])  
           reader.getValueNames()).length) { 
            String[] values = new String[tokens.countTokens()]; 
            int k = 0; 
            while (tokens.hasMoreTokens()) { 
               values[k] = tokens.nextToken().trim(); 
               k++; 
            } 
            new INIFileWriter(reader.getFileName(),  
              reader.getTabNames(), reader.getSubCounter(),  
              reader.getValueNames(), values); 
         } 
      } 
      d.dispose(); 
      return; 
   } 
 
} 

 
 
       

// The INIFileReader class 
 
package nsfssim; 
 
import simkit.util.*; 
 
import java.io.*; 
import java.util.*; 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
 
public class INIFileReader extends JPanel {  
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   private INIFileProperties fileINI; 
   private String fileName; 
   private JTabbedPane pane; 
   private JPanel[] tabs; 
   private String[] tabNames; 
   private String[] valueNames; 
   private String[] values; 
   private JTextField[] valueFields; 
   private int counter; 
   private Integer[] subCounter; 
   private int subTotal; 
   private int valueCounter; 
   
/** 
 * Creates an INIFileReader that sorts the keys of the INI file 
 * into tabbed Panes and JLabels and allows the values to be  
 * changed. 
**/ 
   public INIFileReader(File file) { 
      counter = 0; 
      subTotal = 0; 
      valueCounter = 0; 
      pane = new JTabbedPane(); 
      Properties prop = null; 
      fileName = file.toString(); 
      fileINI = new INIFileProperties(); 
      fileINI.load(fileName); 
             
      tabNames = new String[fileINI.size()]; 
      tabs = new JPanel[fileINI.size()]; 
      subCounter = new Integer[fileINI.size()]; 
      for (Enumeration e = fileINI.keys(); e.hasMoreElements();) { 
         Object key = e.nextElement(); 
         tabNames[counter] = key.toString().trim(); 
         tabs[counter] = new JPanel(); 
         try { 
            prop = (Properties) fileINI.get(key); 
            subCounter[counter]= new Integer(prop.size()); 
            subTotal += subCounter[counter].intValue(); 
         } 
         catch (ClassCastException ex) {System.err.println(ex);} 
         catch (NullPointerException ex) {System.err.println(ex);} 
         counter++; 
      } 
      counter = 0; 
      valueNames = new String[subTotal]; 
      values = new String[subTotal]; 
      valueFields = new JTextField[subTotal]; 
      for (Enumeration e = fileINI.keys(); e.hasMoreElements();) { 
         Object key = e.nextElement(); 
         tabs[counter].setLayout(new GridBagLayout()); 
         GridBagConstraints c = new GridBagConstraints(); 
         c.insets = new Insets(3, 3, 3, 3); 
         c.gridx = GridBagConstraints.RELATIVE; 
         c.gridy = 0; 
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         try { 
            prop = (Properties) fileINI.get(key); 
            int i = 0; 
            for (Enumeration en = prop.keys(); en.hasMoreElements();) { 
               Object key2 = en.nextElement(); 
     valueNames[valueCounter] = key2.toString().trim(); 
     values[valueCounter] = new  
                 String(prop.get(key2).toString().trim()); 
     valueFields[valueCounter] = new JTextField(22); 
     valueFields[valueCounter].setForeground(Color.black); 
               valueFields[valueCounter].setText(values[valueCounter]); 
               if (i != 0 && i%2 == 0) { 
                  c.gridy++; 
               } 
     JLabel label = new JLabel(valueNames[valueCounter]); 
     label.setForeground(Color.blue); 
               tabs[counter].add(label, c); 
               tabs[counter].add(valueFields[valueCounter], c); 
               i++; 
               if (i> subCounter[counter].intValue()){ 
                  i =0; 
               }     
               valueCounter++;  
            } 
            pane.addTab(tabNames[counter], tabs[counter]); 
            counter++; 
         } 
         catch (ClassCastException ex) {System.err.println(ex);} 
         catch (NullPointerException ex) {System.err.println(ex);} 
      } 
      this.add(pane); 
 
   } 
   public String getFileName() {return fileName;} 
   public String[] getTabNames() {return tabNames;} 
   public String[] getValueNames() {return valueNames;} 
   public String[] getValues() {return values;} 
   public Integer[] getSubCounter() {return subCounter;} 
   public JTextField[] getValueFields() { return valueFields; } 
 
} 
 

 

// The INIFileWriter class 
package nsfssim; 
/** 
  * This class writes an INI file.  
**/ 
import java.io.*; 
import java.util.*; 
import javax.swing.*; 
 
public class INIFileWriter { 
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// instance variables 
   private String fileName; 
   private Properties hash; 
 
// constructors 
   public INIFileWriter(String file, String[] bracket, Integer[]  
     keyNums, String[] keys, String[] values ) { 
      hash = new Properties(); 
      Properties hash2; 
      fileName = file; 
      String nullString = null; 
      int k = 0;  
      for (int i =0; i < bracket.length; i++) { 
         hash2 = new Properties(); 
         for (int j = 0; j < keyNums[i].intValue(); j++) { 
            hash2.put(keys[k], values[k]); 
            k++; 
         } 
         hash.put(bracket[i], hash2); 
      } 
      this.checkFile(); 
   } 
 
   public INIFileWriter(String file, Properties prop) { 
      hash = (Properties) prop.clone(); 
      fileName = file; 
      this.checkFile(); 
   } 
 
// instance methods 
   public void checkFile() { 
      File file = new File(fileName); 
      if (file.exists()) { 
         JFrame f = new JFrame("Overwrite?"); 
         int result = JOptionPane.showConfirmDialog(f, 
           new String("Save " + file.toString() + "?"), "Save File", 
      JOptionPane.YES_NO_OPTION); 
         if (result == JOptionPane.YES_OPTION) { 
            f.dispose(); 
            this.makeFile(); 
       this.showSavedMessage(); 
         } 
         else { 
            f.dispose(); 
         } 
      } 
   } 
       
   public void makeFile() { 
      StringBuffer buf = new StringBuffer(); 
      try { 
         PrintWriter printOut = new PrintWriter(new  
           FileWriter(fileName)); 
         Properties prop = null; 
         for (Enumeration e = hash.keys(); e.hasMoreElements(); ) { 
            Object key = e.nextElement(); 
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            buf.append('\n'); 
            buf.append('['); 
            buf.append(key.toString()); 
            buf.append(']'); 
            buf.append('\n'); 
            try { 
               prop = (Properties) hash.get(key); 
               for (Enumeration f = prop.keys(); f.hasMoreElements();)  
               { 
                  Object key2 = f.nextElement(); 
                  Object value2 = prop.get(key2); 
                  buf.append(key2.toString()); 
                  buf.append(" = "); 
                  if (value2 != null){ 
                     if (value2.toString().equals("null")) {} 
                     else { 
                        buf.append(value2.toString()); 
                     } 
                  } 
                  buf.append('\n'); 
              } 
           } 
           catch (ClassCastException ex)  
             {buf.append(hash.get(key).toString());} 
           catch (NullPointerException ex) {} 
        } 
          printOut.print(buf); 
     printOut.flush(); 
          printOut.close(); 
      }    
      catch (IOException e) { System.out.println(e);} 
   } 
 
   public void showSavedMessage() { 
      JFrame f = new JFrame("Saved"); 
 JOptionPane.showMessageDialog(f, new String("File " + fileName +  
        " saved."), "Save Complete", JOptionPane.INFORMATION_MESSAGE); 
      f.dispose(); 
   } 
 
   public String getName() { 
      return fileName; 
   } 
 
} 
 

 

// The JPanelDialog class 
package nsfssim; 
 
import simkit.util.*; 
 
import java.util.*; 
import javax.swing.*; 
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import java.awt.*; 
import java.awt.event.*; 
import java.beans.*; 
 
public class JPanelDialog extends JDialog implements 
  PropertyChangeListener { 
 
   protected JOptionPane optionPane; 
   private static String[] options = { "Cancel" , "OK"}; 
   private static String okString = "OK"; 
   private JTextField[] fields; 
 
   public JPanelDialog(Frame f, String title, boolean modal, JPanel  
    panel, JTextField[]  
     textFields, String words) { 
 super(f, title, modal); 
      fields = new JTextField[textFields.length]; 
      for (int i=0; i < textFields.length; i++) { 
         fields[i] = textFields[i]; 
      }     
 Object[] message = new Object[] { panel, words };  
 optionPane = new JOptionPane( 
        message, JOptionPane.PLAIN_MESSAGE,  
        JOptionPane.OK_CANCEL_OPTION 
      ); 
 optionPane.addPropertyChangeListener(this); 
 this.getContentPane().add(optionPane, BorderLayout.CENTER); 
 this.pack(); 
 this.setLocationRelativeTo(f); 
 this.setResizable(false); 
   } 
 
// This method gets the result of the dialog 
   public String getValue() { 
 String selectedValue = null; 
 StringBuffer returnValue = new StringBuffer(); 
      if (optionPane.getValue()!= JOptionPane.UNINITIALIZED_VALUE) { 
         int result = ((Integer) optionPane.getValue()).intValue(); 
         if (result == JOptionPane.OK_OPTION) {   
            for (int i = 0; i < fields.length; i++) { 
               String text = fields[i].getText().trim().replace(' ',  
                 '_'); 
               if (text.equals("")) { 
                  returnValue.append("null"); 
               } 
               else {                      
                  returnValue.append(text); 
               } 
               returnValue.append(" "); 
            } 
  selectedValue = returnValue.toString().trim(); 
         } 
      } 
      return selectedValue; 
   } 
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// PropertyChangeListener for JOptionPane 
   public void propertyChange(PropertyChangeEvent evt) { 
      if (evt.getPropertyName().equals(JOptionPane.VALUE_PROPERTY)) { 
    this.dispose(); 
 } 
   } 
 
} 
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APPENDIX B: CREATING ANIMATION IN NSFSSIM 

NSFSSim is structured with a Model-View-Controller (MVC) design.  That is, a 

non-visual simulation model (utilizing Simkit components and classes written in Java) 

operates independently of the visual view (e.g., NSFSSim’s animation mode); a 

controller (in the form of keyboard and mouse events applied to the GUI) serves to 

synchronize the model with the view.  The model and the view do not have to be aware 

of the existence of the other to function properly.   

When one clicks on NSFSSim’s main window to enable the animation mode, two 

things occur: an animation window opens and a “Ping” thread is enabled.  When this 

thread is enabled, a “Ping” event is placed on the event list at regular intervals (the user 

can modify the interval between the “Ping” events).  When each “Ping” event occurs, the 

Movers in the simulation model are painted in the animation window.  Two of the classes 

written to create the animation in NSFSSim are PingThread and AnimationFrame, 

which are listed here in their entirety: 

  

// The PingThread class      

package nsfssim; 
 
import simkit.*; 
 
import java.awt.event.*; 
import javax.swing.*; 
import java.lang.reflect.*; 
 
/** 
 *  <P> An extremely simple way to animate Simkit programs. 
 *  a Ping event occurs every deltaT utints of simulated time, which 
 *  correspond roughly to millisPerSimTime milliseconds of real time 
 *  (your mileage may vary).  Any listeners to Ping may do as they 
 *  wish, such as updating the position of units drawn on a screen. 
 * 
 *  <P> This is perhaps an overly naive approach.  Suggestions are 



 76 

 *  welcome. 
 * 
 *  @author Arnold Buss 
**/ 
 
public class PingThread extends SimEntityBase implements Runnable { 
 
   private double deltaT;  // Time between Pings events 
   private double millisPerSimtime; // Real time per simulated time 
   private boolean pinging;         // true if currently active 
 
   private long realTimeStep; 
   private long startStep; 
 
// constructors 
   public PingThread(double dt, double mpst) { 
      this.setDeltaT(dt); 
      this.setMillisPerSimtime(mpst); 
   } 
 
   public PingThread(double dt, double mpst, boolean pinging) { 
      this(dt, mpst); 
      this.setPinging(pinging); 
   } 
 
/** 
 *  Simkit initialization -- if instance is created with 
 *  <CODE>pinging</CODE> set true, then create Thread and start it. 
**/ 
   public void doRun() { 
      if (this.isPinging()) { 
         this.startPinging(); 
      } 
   } 
 
/** 
 *  Start pinging and wait forever (or until the Thread is stopped). 
 *  The <CODE>while</CODE> loop appears necessary to keep the Thread  
 *  from terminating by returning from <CODE>run()</CODE>. 
**/ 
    public void startPinging() { 
       new Thread(this).start(); 
    } 
 
    public void run() { 
       this.setPinging(true); 
       waitDelay("Ping", 0.0); 
       startStep = System.currentTimeMillis(); 
    } 
 
/** 
 *  Stop and shut down the Event List. 
**/ 
   public void stopPinging() { 
      this.setPinging(false); 
      this.interruptAll(); 
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   } 
 
/** 
 *  The main point of the class is the Ping event, which actually does 
 *  nothing in and of itself other than schedule the next Ping event. 
 *  Note that the sleep time is the number of milliseconds equivalent  
 *  to deltaT, as specified by the user. 
**/ 
   public synchronized void doPing() { 
      if (isPinging()) { 
         waitDelay("Ping", deltaT); 
         try { 
            Thread.sleep((long) (deltaT * millisPerSimtime)); 
         }  
         catch (InterruptedException e) {} 
      } 

long now = System.currentTimeMillis(); 
      realTimeStep = now - startStep; 
      startStep = now; 
      long offBy = realTimeStep - (long) (deltaT * millisPerSimtime); 
   } 
 
   public void pause() { Schedule.pauseSimulation(); } 
   public void resume() { this.startPinging(); } 
 
   public void setDeltaT(double dt) {deltaT = dt;} 
   public void setMillisPerSimtime(double mpst) {millisPerSimtime =  
     mpst;} 
   public void setPinging(boolean p) {pinging = p;} 
 
   public double getDeltaT() {return deltaT;} 
   public double getMillisPerSimtime() {return millisPerSimtime;} 
   public boolean isPinging() {return pinging;} 
 
} 
 

// The AnimationFrame class 

package nsfssim; 
/** 
 *  <P> This class paints Movers when Ping events occur. 
 *  @author H.B. Le 
**/ 
import simkit.*; 
import simkit.smd.*; 
 
import javax.swing.*; 
import javax.swing.border.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.util.*; 
import javax.swing.text.*; 
 
public class AnimationFrame extends JFrame implements  
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  SimEventListener { 
 
   private static String DEFAULT_TITLE; 
   private static Icon BACKGROUND; 
  
   static { 
 DEFAULT_TITLE = "NSFSSim Animation"; 
 BACKGROUND = new ImageIcon(AnimationFrame.class. 
        getResource("icons/geo.gif").getFile()); 
   } 
 
// instance variables 
   private Icon area;   // The background image 
   private Hashtable2 icons;  // Stores the icon file names 
   private Vector entities;  // This instance's movers 
   private Image offscreen;         // For double-buffering the display 
   private JPanel sandbox; 
   private Graphics dbuf; 
   private PingThread pt;  // This instance’s PingThread 
   
// constructors 
   public AnimationFrame(PingThread ping) { 
 this(DEFAULT_TITLE, ping); 
   } 
 
   public AnimationFrame(String title, PingThread ping) { 
 super(title); 
 pt = ping; 
      this.init(); 
 area = BACKGROUND; 
   } 
 
   public AnimationFrame(int x, int y, int w, int h, PingThread ping) { 
 this(x, y, w, h, ping, BACKGROUND); 
      this.setBounds(x, y, w, h); 
      pt = ping; 
      this.init(); 
   } 
 

public AnimationFrame(int x, int y, int w, int h, PingThread ping, 
  Icon geo) { 

 super(DEFAULT_TITLE); 
 this.setBounds(x, y, w, h); 
      pt = ping; 
 area = geo; 
      this.init(); 
   } 
 
   public AnimationFrame(String title, int x, int y, int w, int h,  
    PingThread ping, Icon geo, Hashtable2 theIcons) { 
 super(title); 
      this.setBounds(x, y, w, h); 
      pt = ping; 
 area = geo; 
      this.init(); 
      this.setIcons(theIcons); 
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   } 
 
// instance methods 
   public void init() { 
      sandbox = new JPanel(); 
 sandbox.setBackground(Color.white); 
      this.getContentPane().add(sandbox, BorderLayout.CENTER); 
      pt.addSimEventListener(this); 
      this.getContentPane().add(new PingPanel(pt, this),  
        BorderLayout.SOUTH); 
 entities = new Vector(); 
   } 
 
/** 
 *  Redraw the screen based on the current position of the Movers using 
 *  double-buffering. 
**/ 
   protected void updateEntities() { 
      Graphics g = sandbox.getGraphics(); 
      if (offscreen == null) { 
         offscreen = sandbox.createImage(sandbox.getSize().width,  

     sandbox.getSize().height); 
      } 
      dbuf = offscreen.getGraphics(); 
      dbuf.fillRect(0, 0, getContentPane().getSize().width,  
        getContentPane().getSize().height); 
      area.paintIcon(getContentPane(), dbuf, 0, 0); 
      for (Enumeration e = entities.elements(); e.hasMoreElements();) { 
         Mover nextMover = (Mover) e.nextElement(); 
         if (nextMover instanceof NSFSShip) { 
            this.paintShipGraphic(nextMover); 
         } 
     else if (nextMover instanceof ArtilleryBattery && 
           ((ArtilleryBattery) nextMover).isAlive()) { 
   this.paintBatteryGraphic(nextMover); 
     } 
     else if (nextMover instanceof ArtilleryBattery && 
           !((ArtilleryBattery) nextMover).isAlive()) { } 
     else { 
        int x = (int) nextMover.getCurrentLocation().getXCoord(); 
            int y = (int) nextMover.getCurrentLocation().getYCoord(); 
   this.paintGraphic(this.getIcon(nextMover, "default"), x,  
              y); 
         } 
      } 
      g.drawImage(offscreen, 0, 0, this); 
      g.dispose(); 
      dbuf.dispose(); 
   } 
 
   /** 
    *  Paints the ship using one of several possible icons. 
    *  @param ship = the ship to be painted 
   **/  
   public void paintShipGraphic(Mover ship) { 
      int x = (int) ship.getCurrentLocation().getXCoord(); 



 80 

      int y = (int) ship.getCurrentLocation().getYCoord(); 
      if (((NSFSShip) ship).isMoving()) { 
    if (((NSFSShip) ship).isCommencingOnloadSequence()) { 
       this.paintGraphic(this.getIcon(ship, "stbdUW"), x, y); 
    } 
    else { 
  this.paintGraphic(this.getIcon(ship, "portUW"), x, y); 
    } 
 } 
 else if (((NSFSShip) ship).isCommencingOnloadSequence()) { 
    this.paintGraphic(this.getIcon(ship, "stbd"), x, y); 
 } 
 else { 
    this.paintGraphic(this.getIcon(ship, "port"), x, y); 
 } 
   } 
 
   /** 
    *  Paints the battery using one of several possible icons. 
    *  @param battery = the battery to be painted 
   **/  
 
   public void paintBatteryGraphic(Mover battery) { 
      int x = (int) battery.getCurrentLocation().getXCoord(); 
      int y = (int) battery.getCurrentLocation().getYCoord(); 
 if (!((ArtilleryBattery) battery).isFiring()) {  
    if (((ArtilleryBattery) battery).isAtFullStrength()) { 
       this.paintGraphic(this.getIcon(battery, "fullStrength"), x,  

  y); 
    } 
    else if (((ArtilleryBattery) battery).getCurrentNumberGuns() >  

     1) { 
       this.paintGraphic(this.getIcon(battery, "weak"), x, y); 
    } 
    else { 
       this.paintGraphic(this.getIcon(battery, "neardead"), x, y); 
    }  
 }  
 else { 
    this.paintGraphic(this.getIcon(battery, "firing"), x, y); 
 } 
   } 
 
   public void paintGraphic(Icon icon, int x, int y) { 
 icon.paintIcon(getContentPane(), dbuf, x, y); 
   } 
 
 
/** 
 *  Adds a new mover. 
 *  @param m = the new Mover added. 
**/ 
   public void addMover(Mover m) { 
      if (!entities.contains(m)){ 
         entities.addElement(m); 
      } 
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   } 
 
/** 
 *  Removes a mover. 
 *  @param m = the removed Mover. 
**/ 
   public void removeMover(Mover m) { 
      if (entities.contains(m)) { 
         entities.removeElement(m); 
      } 
   } 
 
/** 
 *  Removes all movers. 
**/ 
   public void removeMovers() { 
 entities.clear(); 
   } 
 
/** 
 *  Gets a copy of movers in a thread-safe manner.  
**/ 
   public Vector getMovers() { 
      Vector copy = null; 
      synchronized(entities) { 
         copy = (Vector) entities.clone(); 
      } 
      return copy; 
   } 
 
/** 
 *  Here's where the Ping event is heard and entities are updated. 
**/ 
   public void processSimEvent(SimEvent e) { 
      if (e.getEventName().equals("Ping")) { 
         this.updateEntities(); 
      } 
   } 
 
   public void setIcons(Hashtable2 theIcons) { icons = theIcons; } 
 
   public Icon getIcon(Mover mover, String iconKey) { 
 String moverClass = mover.getClass().getName(); 
 String iconFile = icons.get(moverClass, iconKey).toString();  
      return new 

  ImageIcon(AnimationFrame.class.getResource(iconFile). 
    getFile()); 

   } 
 
   public JPanel getSandbox() { return sandbox; } 
   public PingThread getPingThread() { return pt; } 
 
}  
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